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Because interfacial wave dynamics on a falling film involves quasisteady localized solitary pulses, its
complex spatiotemporal dynamics exhibits certain generic features and scalings. We construct a statistical
theory for such dynamics from our earlier theory for binary pulse interaction@Physica D63, 299~1993!; Phys.
Rev. Lett. 75, 1747 ~1995!; J. Fluid Mech.294, 123 ~1995!#. The theory shows that the average pulse
separation increases linearly downstream from the inlet with a universal slope and that the average pulse
velocity increases with a generic power of 2/7. Prediction for the final equilibrium separation is also offered by
the theory. The coarsening features are driven by an irreversible coalescence of the pulses whose local dy-
namics can be renormalized via an affine transformation due to the scale invariance of the localized pulses. The
generic scalings for the dynamics arise from the affine transformation and are favorably compared to numerical
simulation and experimental data.@S1063-651X~96!01508-5#

PACS number~s!: 47.20.Ky, 47.35.1i, 47.11.1j, 47.20.Ma

I. INTRODUCTION

Open-flow extended-domain systems, such as the falling
film, are often ‘‘convectively unstable’’ such that inlet noise
is convected into the flow channel and triggers complex
spatio-temporal behavior within the otherwise noisefree do-
mains @1,2#. As a result, simulations with low Reynolds
number and weakly nonlinear models such as the Kuramoto-
Sivashinsky~KS! equation yield such highly irregular fluc-
tuations in space and time that the KS equation has become
a prototype for spatiotemporal chaos@3#. However, it was
shown recently@4–6# that, when dispersion is added to the
KS equation, the irregular fluctuations synchronize into
pulselike coherent structures and that, while the dynamics is
still quite rich, it is far less random than the KS equation.
This observation suggests that low-dimensional deterministic
dynamical systems can capture the pulse interaction dynam-
ics faithfully. Since dispersion is introduced by inertia at
high Reynolds number, this also suggests that high-
Reynolds-number films~10,R,300! can give rise to low-
dimensional dynamics dominated by solitary pulses. This
was verified numerically@7,9# with a more realistic model of
falling film than the KS equation and experimentally by Liu
and Gollub@8# for an inclined film. In the snapshot of Fig. 1
from our simulation, such pulses appear at aboutx5200 in
the normalized coordinate orx522 cm in actual units for
water from the inlet where random noise was introduced.
While residual effects of inlet noise can still be felt in the
random distribution of the pulses, the dynamics beyond the
inception of pulses was observed to be largely deterministic
@9#.

This pulse-driven deterministic dynamics involves a
unique irreversible coalescence~fusion! of a large pulse with
a smaller front pulse@8#. Unlike solitons of integrable sys-
tems such as the Korteweg–de Vries~KdV! and nonlinear

Schrödinger equations, such irreversible coalescence creates
a single larger pulse which does not split into two pulses.
The created pulse then coalesces with more smaller pulses in
a cascading fashion. However, the larger pulses also decay in
amplitude and speed as they approach the slower and smaller
front pulses. As a result, the frequency of coalescence de-
creases gradually until it stops entirely when the pulse sepa-
ration is so large that the large pulses created from prior
coalescence events cannot chase down their front neighbors
to precipitate further coalescence. Such cascading coales-
cence sequences are seen in the world lines of Fig. 1. As the
pulses are eliminated by coalescence, the pulse separation
increases downstream~the wave texture coarsens! as is evi-
dent in Fig. 1. There is a concomitant increase in the average
pulse speed, pulse amplitude, and thickness of the substrate
layer beneath the pulse as seen in our simulation shown in
Fig. 2. A striking feature of the coalescence dynamics is that
the pulse separation̂l & increases linearly downstream before
it saturates at an equilibrium value^l &` . The pulse speed, on
the other hand, seems to increase in some fractional power of
the downstream distancex. We shall show that both scalings
with respect tox are universal for falling-film pulses and
obtain estimates for them from first principles. We also note
that the local substrate thicknesss is much smaller than the
unit flat-film thickness at the inlet and gradually increases
from pulse inception to an equilibrium values` , which is
about 0.8 for the standard case shown in Fig. 2.

The statistical theory that yields these generic scalings is
based on our earlier deterministic theory for how a large
pulse interacts with a smaller front neighbor@7#. Due to the
localized structure of the pulses and their slow, quasisteady
dynamics, the binary interaction exhibits certain scale invari-
ance such that all interactions can be transformed by an af-
fine transformation to a normalized binary interaction prob-
lem involving a family of solitary pulses. At every station
along the channel there are then, on the average, two distinct
members of the pulse family, a small pulse and a large pulse.
The latter pulse arises from fusion of two of the former
pulses and hence has twice the area. Knowing the relative
fraction of these two pulses, their speeds, and the decay rate
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of the large pulse, we can hence predict the average coales-
cence time, the new relative fraction, and, from overall mass
balance, the two new members of the pulse family that are
generated after the coalescence time. In this manner, an it-
eration map on the pulse family is established to model the
evolution dynamics downstream. The predictions from the
theory are in good agreement with our numerical simulation
and with some literature data.

II. NORMALIZATION AND SELF-SIMILARITY

Under most realistic conditions at low flow rate but with
R in excess of 10, the wave dynamics for a vertically falling
film can be described by the averaged equation first derived
by Shkadov@10#,
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This equation is used in the simulations of Figs. 1 and 2. The
variableh is the interfacial height andq the average flow
rate. The only parameterd is a modified Reynolds number,

d5R11/9/5g1/337/9, where g5sn24/3g21/3/r is the Kapitza
number@12#, dependent only on the fluid property, while the
Reynolds numberR5^u&hN/n is defined with respect to the
Nusselt flat film with average velocitŷu& and thickness
hN5(3n^u&/g)1/2. The dimensionless film heighth is scaled
by hN and the dimensionless flow rateq by hN^u&. The di-
mensionless downstream coordinate is scaled bykhN where
k5322/9g1/3R22/9.

In our simulation of~1! in Figs. 1 and 2, we use the
boundary condition where a zero-mean inlet noise is applied
to the Nusselt flat film there. As a result, the time-averaged
film thickness and flow rate at the inlet are both unity. How-
ever, after the pulses are formed, any given pulse sits on a
local substrate layer with local thicknesss that is less than
unity, as shown in Fig. 2. As the pulse density decreases
downstream,s approaches a constants` close to unity but
never quite gets there. Each pulse on a local substrates
moves in a stationary manner with a speedc, as seen from
the world lines of Fig. 1. It is the localized width of the pulse
structure, which has lost memory of the original thicknesshN
and much of the inlet noise, and the stationary speed and
shape of the pulses that allow us to develop a rational,
largely deterministic theory for these complex dynamics.
Transformed to a moving coordinate with speedc, the sta-
tionary equation that defines each local pulse then becomes

FIG. 1. A snapshot of the wave tracingh(x,t) for d50.216. Zero-mean random white noise is introduced to the inlet flow rate while the
inlet film thickness is the Nusselt thickness such thath51. Small-amplitude sinusoidal waves precipitate solitary pulses atx5200. The pulse
separation, amplitude, and substrate thickness increase downstream due to coalescence. Two pulses about to coalesce are seen atx5375 and
a large pulse results from a coalescence atx5780. The coalescence events are also seen in the world lines tracing the pulses below. The
pulse speeds are locally constant but gradually accelerate downstream.
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The substrate flow rate is a factor ofs3 less than the unit flow
rate because the parabolic flow profile of a flat film stipulates
that its flow rate scales as the cube of the interfacial height.

Sinces varies downstream, it is convenient to normalize
each substrate thickness to unity. In essence, we choose the
local substrate thickness and flow rate to rescale the vari-
ables. This then transforms the inlet Reynolds numberd to a
local normalized Reynolds numberD. The corresponding
normalizing transformation is a power-law affine transforma-
tion involving s:

x5s1/3X, h5sH, q5s3Q, c5s2D, d5s211/3D,

~4!

yielding the local normalized equation
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The self-similarity allows power-law type scalings ins to
eliminates from ~2!. We note that while the local Reynolds
numberD is smaller thand ~the inlet Reynolds number!, the
locally normalized speedD, flow rate Q, and heightH
all increased because a thinner substrate layer with a smaller
flow rate is now used as the reference. The subscript denotes
the derivative in Eq.~5a!. The fact that every pulse in
Fig. 1 with a differents can be normalized to~5! and ~6! is
because their localized structure stipulates that a flat-film
substrate exists locally and there is hence an absence of a
specified length scale in thex direction. This allows the af-
fine group transformation parametrized by the substrate
thicknesss. If, for example, the waves were periodic with a

FIG. 2. Time-averaged pulse separation, pulse speed, pulse amplitude, and substrate thickness as a function of downstream position for
d50.216. Data are taken over 1000 units of time. Pulse inception occurs atx;200, beyond which the self-similar dynamics begin.
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known wavelength, the transformationx5s1/3X would not
have been compatible. This existence of self-similarity is
quite common for problems in an unbounded domain with no
specified length scales. Although~4! has been applied to the
averaged equation, similar affine transformations in powers
of s exist for solitary waves of the Navier-Stokes equation.

The advantage of this local normalization is that the three
parametersc, d, ands of ~2! and~3! are transformed to two
parametersD andD. The construction of the pulse solution
then corresponds to the determination of the nonlinear eigen-
valueD as a function ofD. The construction of this one-
parameter family was carried out in@11# and we reproduce
the constructed pulse family in Fig. 3 as well as its speedD,
area above the substrateA5* 2`

` (H21)dX, and maximum
amplitudeHmax in Fig. 4. In Fig. 5, we show that the time-
averaged pulse speed from our simulation of Fig. 1, scaled
by the time-averaged local average substrate thickness ac-
cording to~4!, falls on theD~D! curve for the speed of the
solitary pulse family. This indicates that, while the separa-
tion between the pulses is quite random with a broad distri-
bution, each pulse is a quasisteady solitary pulse, and the
distribution in the pulse speed is quite narrow at every sta-
tion, such that the local average pulse is still described by
D~D!. In the next section, we shall show that there is an
intermittent coalescence event, whose frequency is lower
than the average pulse frequency, that creates larger pulses.
As a result, there are two types of pulses at every station—a
small pulse and a large~excited! pulse. However, we shall
also show that, due to the linearity ofA~D! and the constant
asymptote ofD~D! at a relatively largeD, the average speed
still belongs toD~D! of the solitary pulse family. Hence,all
time-averaged pulses at every station belong to the one-
parameter pulse family in Fig. 3 after normalization by~4!.

We further support this theory by recording the pulse
speed and separation distribution of our simulation as shown

FIG. 3. Normalized solitary pulse family with increasing pulse
amplitude asD increases. All pulses have unit substrate thickness.

FIG. 4. Speed, area, ampli-
tude, and decay coefficient of the
normalized pulse family.
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in Fig. 6. While the separation distribution clearly broadens
after pulse inception, the speed distribution actually narrows
downstream. Although the larger pulses travel faster, their
speed is close to the smaller pulse and it is continually de-
caying towards the latter speed. Consequently, the recording
sees a continuous but small band of speeds for these pulses
ranging from the speed of the small pulse to the highest
speed, corresponding to when the excited pulse is first cre-
ated by coalescence. As a result, the speed distribution is
narrow, smooth, and skews to the right.

The irreversible and self-sustained coalescence events that
produce the large pulses and coarsen the wave texture also
increase the average pulse speed and pulse height as seen in
Fig. 2. This is because, as the pulse density decreases, the
pulses must become bigger to carry the same flow rate. As
the pulses get bigger, their substrate layer thickness must
also increase to maintain the force balance that sustains the
stationary motion of the pulses. There is hence a quasisteady
increase in the local normalized Reynolds numberD, pulse
speedD, height Hmax, and areaA as the average pulse
climbs the solitary pulse family in Fig. 5.

The global mass balance that specifies the member of the
pulse family at each station can be derived by considering
the normalized kinematic condition~5b!, which represents a
simple mass balance in the moving frame. For a solitary
pulse to be steady in the moving frame, the flow rate at every
positionX, Q(X)2DH(X), must be the same and equal to
that of the flat film 12D. Both flow rates are measured in the
moving frame which accounts for the terms2DH andD.
Because of the localized structure of the pulses, the average
over a sequence of randomly spaced pulses with identical
speed is equal to that of a periodically spaced pulse train,

^•••&5 lim
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1

X0
E
X

X1X0
••• dX5

1

L E
X

X1L

••• dX,

where L is the average separation.~We shall correct this
formulation later to account for the existence of two distinct

pulses.! Applying this averaging to~5b!, which is valid for
every pulse in a randomly spaced train, and sinceD is iden-
tical for every pulse~or at least has a narrow distribution as
seen in Fig. 6! such that̂ DH&5D^H&, one obtains

^Q&5D^H&112D5
D

L E
0

L

~H21!dX115
DA~D!

L
11,

~7!

where the last equality applies due to the narrow width of the
localized pulse which is much smaller thatL. The quantity
^Q&, the space-averaged flow rate, is also the time-averaged
flow rate measured at any station as the pulse train passes by.
Hence, due to a global mass balance, it must be equal to the
time-averaged flow rate at the inlet^q& after returning to the
original variables of~1!. In such variables,̂q&51 since the
inlet conditions are chosen to scale the variables, and one
obtains, after invoking~4!,

^Q&5s23. ~8!

Combining this with~7!, we obtain the mass balance con-
dition which relates the average separation^ l & in the original
coordinatex to the substrate thicknesss of the original scal-
ing and the local normalized Reynolds number,

^ l &5Ls1/35D~D!A~D!s10/3/~12s3!. ~9a!

This estimate neglects the presence of the excited large
pulses which will be considered in the next section. Near the
inception point of the pulses~x5200 in Fig. 1!, s is small
~see Fig. 2! and ~9a! can be further simplified to a relation
with a power-law dependence ons:

^ l &;D~D!A~D!s10/3. ~9b!

This power-law scaling and its corrected version will yield
generic coarsening exponents near the inception point.

The local normalized Reynolds numberD is also related
to the actual inlet Reynolds number through a power-law
scaling ins according to~4!:

d5s211/3D. ~10!

Hence, the quasisteady evolution of nearly identical but ran-
domly distributed pulses along the solitary pulse family, their
narrow width, and simple mass balance have allowed us to
relate the average separation^ l & at any station to the local
average substrate thicknesss for a givend. What remains is
to decipher the evolution of̂l & downstream, and the entire
dynamics is known.

Before proceeding to the binary interaction dynamics that
determine the evolution of̂l &, we simplify ~9! and ~10! by
noting a certain asymptotic behavior ofD~D! and A~D! at
relatively largeD,

D~D!;D`57.70,
~11!

A~D!;23.5D.

It seems that the pulses reach a constant ‘‘terminal velocity’’
at largerD and their widths reach a constant, while the area
increases linearly with respect toD. We are unable to pro-

FIG. 5. The normalized speedD and Reynolds numberD at
every station at the indicatedx location from the time-averaged data
of Fig. 2 plotted against the pulse speed of the normalized family.
Quasisteady evolution along the family is clear after pulse inception
at x5200.
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vide a physical explanation for this largeD behavior but~11!
allows us to simplify the correlation~9b! near the pulse in-
ception point to

^ l &;23.5D`s
7d ~12!

for relatively largeD and smalls. This provides a more
explicit relationship between̂l & ands for a given inlet Rey-
nolds numberd. More importantly, it retains the power-law
affine scalings ins for the average separation^ l &. This will
allow us to produce generic exponents common in systems
invariant to affine transformation. The range ofD where~11!
is valid also corresponds to most practical conditions for
common fluids like water@13#.

III. BINARY INTERACTION
AND COARSENING DYNAMICS

Much as the average pulse at every station can be normal-
ized to 1 with a unit substrate thickness, the local coales-
cence rate can also be studied after proper normalization.
Such coalescence events correspond to a large pulse chasing
down a smaller front pulse. We shall use the smaller pulse as
the reference pulse for normalization. We shall also assume
that the large pulse has decayed to the extent that it re-
sembles the small pulse at the time of coalescence. Each
large pulse is then created from the coalescence of two
smaller pulses and is assumed to have twice the area of the
latter. Due to its slow decay dynamics, we showed in the
earlier report@7# that the large excited pulse is also a member

FIG. 6. Pulse speedc and separation distributions at various stations from the simulation of Fig. 1. The downstream evolution of the
mean pulse speed in Fig. 2 is also depicted. The speed distribution sharpens dramatically after pulse inception atx5200, while the separation
distribution broadens. The speed distribution also has a longer tail to the right of its mean.
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of the solitary pulse family and exist on a substrate thickness
se different froms of the small reference pulse. The normal-
ized Reynolds numberDe based onse is then different from
D of the small reference pulse. In this model, we hence rep-
resent all the pulses at every station by two members of the
solitary pulse family atD andDe related by

2s4/3A~D!5se
4/3A~De!. ~13!

The scaling s4/3 results because the true area
a5*2`

` (h2s)dx is related to the normalized areaA through
~4! by a5s4/3A.

Strictly speaking, the area of the large pulse should be
equal to the sum of two coalescing pulses upstream. These
two pulses may also have different areas if the larger pulse
has not decayed sufficiently. Nevertheless, pulses upstream
are smaller than the pulses at any given station and we use
~13! as a reasonable estimate of the identity of the large pulse
at every station. The existence of two distinct pulses is not
apparent in the snapshot of Fig. 1 since the large pulses are at
different stages of decay. However, the world lines in the
same figure clearly show two distinct slopes at every given
station. Such world lines capture the pulses over a long in-
terval and are hence more revealing.

SinceD is also related tos through~10! at a givend, ~13!
yields a nonlinear equation,

2A~D!5b4/3A~Db11/3!, ~14!

for b5se/s. Hence, knowingA~D! from Fig. 4 and knowing
s, we can determine the substrate thickness beneath the large
pulse,se , from ~14!. For the largeD limit of interest, the
linear scaling ofA~D! in ~11! implies a constant generic ratio
close to unity:

b'21/5. ~15!

We shall expandb about 1 in our theory to simplify the
analysis.

The fact that b is close to unity also implies that
~De/D!5b11/3;211/15;1.66 and the ratio between two unnor-
malized pulse speeds, (ce/c)5b2, are both close to unity.
The latter explains why the coalescence frequency is lower
than the pulse frequencyc/^ l &. SinceD~D! approaches a
constant at largeD, according to~11! and as seen in Figs. 4
and 5, the closeness ofDe toD implies that the average speed
of the large and small pulses also lies on theD~D! branch of
the solitary pulse family, regardless of the fraction of each.
This explains why the time-averaged speed still follows the
D~D! branch in Fig. 5.

The overall mass balance~9a!, however, must be modified
to account for the presence of the large pulses,

^ l &5F pA~De!se
4/31~12p!A~D!s4/3

p/ce1~12p!/c2pse
3/ce2~12p!s3/cG , ~16a!

wherep is the fraction of large pulses,ce5D(De)se
2 is the

unnormalized speed of the large pulse,De5Db11/3

5D(se/s)11/3, andAe5A(De) is the normalized area of the
large pulse defined in~13!.

For largeD, ~11! and ~15! can be used to simplify~16a!.
Furthermore, if we focus on the region near pulse inception

~x5200 in Fig. 1!, Fig. 2 indicates thats is small in the
region and the denominator of~16! can be approximated by
(p/ce)1(12p)/c. If we further carry out an expansion inp,
~16a! can be simplified to yield a power-law relationship
important for our estimate of the initial coarsening dynamics
near inception, which is a correction to~12! for the presence
of excited pulses,

^ l &;23.5D`ds7
11p

~p/b2!112p
. ~16b!

Condition~14! then identifies the large pulse at every sta-
tion given the reference small pulse with substrate thickness
s. To obtains from ~9a!, the evolution of̂ l & must be known;
to obtains from the more accurate~16!, however, the evo-
lution of both ^ l & and p downstream must be deciphered.
Both require knowledge about how a large pulse chases
down a smaller pulse in front to induce coalescence. Such a
binary pulse interaction was studied in our earlier paper@7#,
where we placed a large pulse whose thickness in the nor-
malized coordinate of~4! is b5se/s behind a reference pulse
which exists on a substrate of unit thickness in the normal-
ized coordinate. Due to the difference in the substrate layer
thicknesses, mass drains out of the back excited pulse, and
its substrate layer thicknessb decreases in time according to

d

dT
~b21!52g~D!~b21!, ~17!

where T5s5/3t is the time coordinate for the normalized
problem. The decay coefficientg was computed in our ear-
lier paper and is plotted in Fig. 4~d!. For largeD values when
~11! applies, this decay coefficient can also be approximated
by

g;0.004D21, ~18!

which retains the power-law scaling required for universal
exponents.

The separationL between the two pulses decreases at a
rate equal to the speed difference between the pulses,

dL

dT
52@D~De!2D~D!#. ~19!

SinceD and s are related through~10!, it will be much
more convenient to represent both the large pulse speed
De5D(De)5D(dse

11/3) and the reference pulse speed
D5D(D)5D(ds11/3) as functions ofse ands. Equation~19!
was derived based on the observation that both the back
large excited pulse and the front pulse are quasisteady and
hence belong to the solitary pulse family.

Sinceb is close to unity from our estimate of~15!, we can
relateDe to D by a local expansion aboutb51 or s5se ,

De;D1a~se2s! ~20!

or, in the unnormalized form,

ce;c1â~se2s!,

where
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a5S ]D~dx11/3!

]x Dx5s, ~21a!

â5S ]x2D~dx11/3!

]x D
x5s

5S ]c

]sD
d

. ~21b!

This approximation then couples~17! and ~19! to yield a
simple relationship for how the separation between the two
pulses decrease as the decaying large pulse chases down the
smaller reference pulse in front,

L~T!5L02
a~b021!s

g
~12egT!,

where the subscript 0 denotes the initial values. Hence, the
time Tc for coalescence in the normalized coordinate is de-
fined byL(Tc)50 or

Tc52
1

g~D!
lnS 12

gL0
a~b021!sD . ~22!

From~22!, an estimate of the equilibrium separation when
Tc5` ~the separation is too large for the back pulse to cap-
ture the front one! is immediately available. In the original
unnormalized coordinate, it becomes

^ l &`5
â~b`21!

g~ds`
11/3!s`

2/3. ~23!

Equation~23!, along with~14! and~16!, then specifiess` ,
b` , and ^ l &` , the equilibrium substrate thickness, the equi-
librium ratio between the substrates of the large and small
pulses, and the average separation. There remains an un-
known variablep` , corresponding to the fraction of large
pulses at equilibrium in~16!.

At relatively largeD values when~11! and ~18! hold,
simple estimates of the equilibrium values can be obtained
by notingb`5b521/5 from ~15! and

â;2sD` ~24!

while ~18! can be used to simplify~23!

^ l &`5
2~b21!D`s`

1/3

g~ds`
11/3!

,

;
D`~b21!

0.002
ds`

4 .

An extra relationship betweens` and^ l &` is provided by
~16!. Sinces is close to unity near equilibrium, as seen in
Fig. 2, the more accurate version~16a! must be used. We
still invoke the largeD approximation of~11!, which be-
comes increasingly accurate at larges sinceD increases with
s, such that

~ce /c!5~se /s!25b2522/5,

~De /D!5b11/3,

to yield

s`5F 12p`1~p` /b
2!

0.047~11p`!/~b21!112p`1p`b G1/3,
~25!

^ l &`5D~b21!ds`
4 /0.002.

As we shall demonstrate, a good estimate for the fraction
of excited pulses is 0.5 and it remains relatively constant
over a large distance. For this value ofp` , we obtain from
~25! s`50.83 and^ l &`558, which are in good agreement
with our simulated results of Fig. 2 and Fig. 7, where the
simulateds`50.80 and^ l &` is 60. Since the average wave-
length near inception is approximately 2p~9d!21/2 @13# andd
is less than unity for water withR,100, it is clear that̂ l &`

is an order of magnitude larger than the average wavelength
at inception—there is significant coarsening.

To obtain the linear coarsening rate in Fig. 7, we need to
estimate the coalescence rate from the coalescence timeTc in
~22!. It is convenient for this estimate to define a length scale
l exp ~where the subscript exp denotes expected value! corre-
sponding to the distance, measured in the laboratory frame,
traveled by the large pulse before coalescence. Given an ini-
tial separation ofl and neglecting the speed differential be-
tween the large pulse and the reference pulse in this deter-
mination, which is consistent with the estimate~15!, we
obtain in the original coordinates from~22!,

l exp5 l2
c

gs5/3
lnS 12

gs5/3l

â~b21!sD , ~26!

wherel is the initial separation between the large pulse and
the front pulse when the former is first created by the prior
coalescence event. Near the inception point of the pulses, the
quantity within the logarithm is close to unity and one gets

l exp; l S 11
c

â~b21!sD . ~27!

FIG. 7. The coarsening dynamics with downstream separation
evolution. The linear initial coarsening rate and the equilibrium
separation are well approximated by~35! with p050.5 and by~26!,
respectively.
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There is a distribution of separationl with an average equal
to ^ l &, the average pulse separation. Due to the linear depen-
dence ofl , one can simply usêl & to describê l exp&,

^ l exp&5^ l &S 11
c

â~b21!sD . ~28!

If we now impose the largeD limit of ~11!, we obtain

^ l exp&;^ l &S 11
1

2~b21! D5^ l &S 2b21

2~b21! D;4.3̂ l &.

~29!

The reason̂l exp& scales linearly with respect tôl & near pulse
inception is because, in this region, the separation is so small
that the speed of the large pulse hardly changes during the
time it chases down its front neighbor, and the elapsed time
for coalescence is simply determined by the difference in the
two speeds,Dc5â(b21)s, and the distance traveled,l [1
1(c/Dc)], where (c/Dc) is only a function ofb521/5 in the
largeD region and is hence constant. The ratio^l exp&/^ l &54.3
corresponds to the ratio of coalescence frequency to average
wave frequency.

Due to the binary coalescence mechanism, the change in
the pulse densitŷl &21 at a particular station over a distance
of ^l exp& is then the product of the large and small pulse
fractions,

1

^ l &
U
x1^ lexp&

2
1

^ l &
U
x

52
p~12p!

^ l &
, ~30!

or

d^ l &
dx

5
p~12p!^ l &

^ l exp&
~31!

as a continuum approximation when viewed from a scale
much larger than̂l exp&. From ~29!, it is then clear that this
binary interaction yields a rate

d^ l &
dx

;
p~12p!

4.3
. ~32!

The coarsening rate~32! will be constant if the fraction of
excited pulsesp remains constant with respect tox. A model
of how p evolves downstream requires some statistical
analysis of how the large pulses are distributed among the
small reference pulses, viz., their average fractions are inad-
equate and higher spatial correlation information is neces-
sary. The reason is that when large pulses are arranged in
packets separated by packets of reference pulses, the hydrau-
lic jump at the front, which is responsible for the decay dy-
namics in~17!, will only cause the first few large pulses to
decay, while the large pulses in the back of the pack remain
excited over a distance of^l exp&. Exactly how many excited
pulses within a packet will decay and become smaller refer-
ence pulses over a distance of^l exp& is difficult to estimate.
However, we shall show below thatp does not vary signifi-
cantly near pulse inception by this mechanism.

Consider a particular pulse train withM reference pulses
andN large pulses whilep5N/(M1N) asM andN ap-
proach infinity. Arrange the large pulses intoK nonempty
packets which are separated by at least one reference pulse.
We allow for all such possible arrangements, and there are
M !/(M2K)!K! possible ways of inserting theK packets in
M small pulses (K<M ,N) while there are (N21)!/(N
2K)!(K21)! kinds of excited pulse packets. Hence, the
number of all possible sequences ofM small pulses andN
large pulses is ( K51

N (M !/M !K!)[(N21)!/(N2K)!(K
21)!] for the case ofM>N. We assume that over^l exp&,
every boundary small reference pulse leading an excited
pulse packet is eliminated due to coalescence, while its back

FIG. 8. Dependence of equi-
librium substrate thickness, equi-
librium separation, and coarsening
rate on the fractionp of excited
pulses. The equilibrium separation
l` scales asd21 and one of the
plots corresponds to the standard
case ofd50.216. The other quan-
tities are independent ofd. Their
only dependence on the inlet flow
condition and noise is throughp0,
which is also generic at about 0.5
due to the subharmonic secondary
instability.
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large neighbor remains a large pulse due to the coalescence.
Also, we assume that no other large pulses behind the one
participating in the coalescence decay to become smaller ref-
erence pulses. The number of reference pulses eliminated by
coalescence is thenN2N2/(M1N) in the limit of largeM
andN. Since the large pulses that participate in the coales-
cence events remain large pulses overl exp, the change inp is

Dp05
N

N1@M2N1N2/~M1N!#
2

N

M1N

5
p22p3

12p1p2
;p2, ~33!

where the subscript 0 denotes no natural decay of large
pulses. Equation~33! is derived forM>N but the same re-
sult is true forM,N.

A simple derivation then yields the following formula for
Dpm whenm large pulses behind the leading excited pulse
decay to become small reference pulses within^l exp&:

Dpm5
pm122p3

12p1p2
;O~p3!. ~34!

The quantityDp1 is zero whileDp0 is positive andDpm,0
for m.1. The actualDp is then some weighted average over
Dpm , with the weight decreasing rapidly at largem due to
the rare probability of all pulses decaying in a large packet of
excited pulses. In addition, sincep is less than unity, we see
that, regardless of the specific weight,d^ l &/dx is of O(p) in

~32! while the variation inp is at most ofO(p2). As a result,
over the first feŵ l exp& ~about 10̂l exp& judging from Fig. 7!,

d^ l &
dx

;p0~12p0!/4.3 ~35!

and is a constant dependent only on the initial fraction of
large pulses,p0.

It remains to determinep0, the fraction of large pulses at
inception. This fraction is determined by how the pulses are
formed from the small-amplitude sinuous waves and is the
only part of the pulse dynamics that is determined by inlet
noise. Its exact value still escapes us, but it seems to be
related to the secondary instabilities of monochromatic
waves that precipitate pulse formation forx,100 in Fig. 1
@2,14#. We have shown that the dominant secondary instabil-
ity is a subharmonic instability with some corruption by a
sideband instability@15#. As a result, every other peak in the
monochromatic wave field, selected from the broadbanded
inlet noise by a linear filtering mechanism@15#, grows rela-

FIG. 9. Simulated downstream evolution of time-averaged
speed for~1! 4R560, ~2! 4R575, and~3! 4R5125 with a white
noise amplitude of 5.031025 to the unit mean inlet flow rate plotted
against Stainthorp and Allen’s measured data in circles, triangles,
and crosses. The power-law evolution is evident beyond pulse in-
ception at the minimum near 10 cm, corresponding tox5200 in
Fig. 2.

FIG. 10. The raw pulse speed data of Stainthorp and Allen for a
vertically falling film. Their Reynolds number Re is related to ourR
by Re54R. The collapsed data for pulse speeds after inception with
R.10 and the dotted curve represent the prediction of~36!.
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tive to its neighbors when all the peaks are evolving into
pulses. As a result,p0 is close to 0.5 and this yields a slope
of 0.08 from ~35! compared to the coarsening rate of 0.09
from our simulation in Fig. 7. If we use this value ofp in
~25! to estimate the equilibrium average substrate thickness
and separation, we also obtain reasonable estimates of 0.83
and 58, respectively, which are favorably compared to simu-
lated values in Figs. 2 and 7. Before equilibrium,p will most
likely decrease to some unknown valuep` due to the natural
decay of the excited pulses. However, as seen in Fig. 8, the
estimates ons` and ^ l &` do not change appreciably from
p50.5 top50.1.

Finally, the asymptotic behaviors~11! of the solitary
pulse speedD~D! and areaA~D! yield the near-inception
mass balance condition~16b!. By combining it with the
power-law scalingc5D`s

2 and the fact thatd^ l &/dx is con-
stant, for a givend, the self-similar form

dc

dx
5
2

7 S cxD
is obtained, and hence one has the generic scaling near in-
ception,

~c/c0!;~x/x0!
2/7, ~36!

that the average pulse speed increases asx2/7 from its incep-
tion point x0.

IV. DISCUSSION AND COMPARISON
TO EXPERIMENTAL DATA

It is quite surprising that spatio-temporal evolution as
complicated as interfacial wave dynamics on a falling film
can be described by simple scaling arguments like~25!, ~35!,
and ~36!. The quantities other than̂l &` depend on the inlet
flow conditions and noise only through the fraction of the
large pulses,p—they are independent ofd. Evenp is found
to have a universal constant of 0.5 due to the generic sub-
harmonic instability during pulse inception. The quasisteady

evolution along a normalized solitary pulse family is obvi-
ously an important reason which allows the renormalization
in the affine transformation~4! in powers of the substrate
thicknesss. In turn, such power scaling ins is possible be-
cause of the scale invariance of the localized solitary pulses
which have forgotten the inlet conditions. However, the
simple generic exponents are also obtained because the as-
ymptotic behaviors of the solitary pulse family at largeD in
~11! and ~18! are power laws inD, and because the global
mass balance~9! or ~16!, which is the only way the time-
averaged inlet condition is felt at every station, can be ap-
proximated by a power-law form at smalls near inception.
The combination of all these power-law scalings then pro-
vides the generic coarsening rate and universal scalings in-
dependent ofd and flow conditions.

While Brock @16# has observed a linear increase in the
wave separation~period! as in our prediction and simulation,
his data are for an inclined film which has an additional
parameter—the inclination angle. For vertically falling films,
the only available literature data are the average pulse speed
measurements of Stainthorp and Allen@17#; and in a recent
report@9#, we have shown that our numerical simulation can
accurately reproduce all their pulse speed data. This required
a model of the inlet noise in their experiment, which is as-
sumed to be white noise with an amplitude that is chosen to
fit their wave inception data. As seen in Fig. 9, this noise
amplitude reproduces their pulse speed evolution accurately
at three different values ofR for water. The simulated evo-
lution of c does have a power-law increase inx with an
exponent close to 2/7, as predicted. To further confirm this,
we have taken all of Stainthorp and Allen’s speed data in
Fig. 10 and normalized them in the form of~36! to verify the
generic 2/7 power-law speed acceleration. A reasonable col-
lapse of highR data is evident. The theory fails forR5Re/4
below 10 because in this KS limit, the pulses have been
shown to be convectively unstable@6#.
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